
Alle Rechte vorbehalten, auch die der Übersetzung, der fotomechanischen Wiedergabe und der Speicherung, auch in elektronischen

Medien. Nachdruck, auch auszugsweise, nur mit schriftlicher Genehmigung vom Inhaber des Copyrights. Bei der Zusammenstellung

von Texten und Abbildungen wurde mit größter Sorgfalt vorgegangen. Trotzdem können Fehler nicht vollständig ausgeschlossen wer-

den. Der Herausgeber kann für fehlerhafte Angaben und deren Folgen weder eine juristische Verantwortung noch irgendeine Haftung

übernehmen. Die dialogue1 GmbH behält sich vor, die beschriebenen Funktionen ohne vorherige Ankündigung im Zuge der Weit-

erentwicklung zu verändern bzw. anzupassen. Für Verbesserungsvorschläge und Hinweise auf Fehler ist sie ebenfalls sehr dankbar.

Änderungen vorbehalten.

© Copyright 2001-2014 dialogue1 GmbH, D-20354 Hamburg

API-Handbuch
Version 2.8.0

Einführung, Dokumentation und Fallbeispiele

Stand: October 22, 2014

Table of Contents

1 Basics 2

1.1 Versioning . 2

1.2 Request . 2

1.2.1 Headers . 2

1.3 Response . 3

1.3.1 Success . 3

1.3.2 Errors . 4

1.4 Embedding . 4

2 Authentication 8

2.1 Signed Requests . 8

2.1.1 Calculating the Signature . 8

2.1.2 Sending the Signature . 9

2.1.3 Identify Yourself . 9

2.2 Failures . 9

2.3 Example Code . 10

3 Resources 12

3.1 Contacts . 12

3.1.1 Structure . 12

3.1.2 Fetch all contacts . 13

3.1.3 Fetch a single contact . 15

3.1.4 Create a new contact . 15

3.1.5 Update a contact . 17

3.1.6 Delete a contact . 19

3.2 Lists . 19

3.2.1 Structure . 20

3.2.2 Fetch all lists . 20

3.2.3 Fetch a single list . 21

3.2.4 Create a new list . 21

3.2.5 Update a list . 23

3.2.6 Delete a list . 24

3.3 Contact Lists . 25

3.3.1 Structure . 25

3.3.2 Get current lists . 26

3.3.3 Add contact to a list . 26

3.3.4 Remove contact from a list . 27

3.4 Folders . 28

i

3.4.1 Structure . 28

3.4.2 Fetch root folder . 29

3.4.3 Fetch a single folder . 29

3.4.4 Fetch child folders . 30

3.4.5 Create a new folder . 31

3.4.6 Update a folder . 32

3.4.7 Delete a folder . 33

3.5 Sendings . 34

3.5.1 Structure . 34

3.5.2 Create a new mailing . 34

3.6 Assets . 37

3.6.1 Structure . 37

3.6.2 Create a new asset . 38

3.7 Files . 40

3.7.1 Structure . 40

3.7.2 Upload a new file . 40

3.8 Bounces . 42

3.8.1 Structure . 42

3.8.2 Fetching bounces . 43

ii

amity REST API, Release 2.8.0

amity offers a REST-like API to access contacts, lists and other data, as well as performing actual sendings.

This document is aimed at developers, who want to build an application or integration into another system, using this

API. It describes the basics of the interface like the structure of requests and responses, the authentication as well as

the available resources and how to interact with them.

Table of Contents 1

CHAPTER 1

Basics

The amity API is based on HTTP and uses JSON as the data format of choice. In general, clients work on resources,

which can be accessed and manipulated by using the HTTP verbs GET, PUT, POST and DELETE. So for example, an

email contact is a resource, much like a list or a folder are resources.

The API is generally available at /api below the customer domain, e.g. http://news.mybusiness.com/api/....

Note: Throughout the documentation, the example JSON documents in requests and responses are usually short-
ened, to only show the relevant parts. Always refer to the resource structure definition to know what fields exist and

what form they take!

1.1 Versioning

The API is versioned, so that clients continue to work, even when never versions break with backwards compatibility.

The version number is embedded in the URL and the first element after the API root (/api), for example:

http://news.mybusiness.com/api/v2/...

Throughout the documentation, the /api and the version number are omitted for brevity. So when we talk about

/contacts, we are really talking about /api/v2/contacts.

1.2 Request

A simple request could look like this:

GET /api/v2/contacts/lm9 HTTP/1.1
Host: news.mybusiness.com
Accept: application/json

The request above would retrieve (GET) the contact lm9.

Besides the resource's URL (/api/v2/contacts/lm9), a request also contains a number of HTTP headers, especially

those containing authentication information.

1.2.1 Headers

The following headers are of general interest and to be included in most of the requests.

2

http://news.mybusiness.com/api/v2/

amity REST API, Release 2.8.0

Accept (mandatory) the desired representation (output) format; has to be application/json in all cases at the

moment; future versions of the API might support different formats

User-Agent (recommended) a unique string to identify the client software and version, for example

initech/myclient 1.0

There are additional headers to control the authentication, which differ by what method a client choses. The docu-

mentation chapter has more information on this.

1.3 Response

The API uses the standard HTTP status codes to indicate the type of result of a request. For example, the code 200
represents a successful execution of the request, whereas 500 indicates a server-side error.

If not stated otherwise, the API always responds with a JSON document, which contains either a resource's represen-

tation or an error. Both cases are described in greater detail below.

A possible answer to the request given above could look like this:

HTTP/1.1 200 OK
Content-Type: application/json; charset=UTF-8
Date: Mon, 20 Jan 2014 13:58:42 GMT
Expires: Mon, 20 Jan 2013 13:58:42 GMT
Server: Apache/2.4.6
Cache-Control: private

{
"data": {

"id": "lm9"
}

}

Note: The JSON document in the actual API's responses is not prettyprinted like in these examples. Clients should
not depend on any formatting in the responses!

1.3.1 Success

A successful (HTTP code 2xx or 3xx) response consists of the JSON representation of the ressource as a JSON object,

where the actual data is below the data key. It does not contain any special status fields like status. Have a look at
the documentation of the specific resource to learn more about its structure.

For a contact list, the JSON could look like this:

{
"data": {

"id": "lm9",
"label": "Standardliste",
"test": false,
"disabled": false,
"links": [

{
"rel": "self",
"uri": "/v2/lists/lm9"

},
{

1.3. Response 3

amity REST API, Release 2.8.0

"rel": "contacts",
"uri": "/v2/lists/lm9/contacts"

},
{

"rel": "folder",
"uri": "/v2/folder/lm9"

}
]

}
}

1.3.2 Errors

In case of an error, the response will contain a JSON document with a status code and a human readable error de-

scription. The status code consists of the HTTP code (e.g. 400) and a detailed, four-digit code. The value for status
is computed by doing ($httpCode * 1000) + $detailCode, so 404127 stands for HTTP 404 (Not Found) and the
detail code 127 (which could stand for something like ``parent element not found'').

The detail codes depend on the type of request and are documented along with the resources. To get the detail code

out of the status field, perform $status - ((int) ($status / 1000)) * 1000 in your client.

With all this said, this is how an error would look like:

{
"status": 400023,
"message": "The required parameter 'name' is missing."

}

Implementations should use the HTTP status code to differentiate between successes and failures, and then can use

the status field and the contained detail code to look deeper into the source of the problem.

The transmitted message is meant to be read by the developer and not suited to be displayed to the end user directly.

Instead, clients should use the status field to switch between error messages.

1.4 Embedding

The amity API allows you to embed related resources when fetching data. This concept is sometimes also known as

including subresources or ``side-loading'' them.

This mechanism allows you to fetch a contact and also -- in the same request -- get all the lists this contact is on, as

well as the folders in which those lists are placed. Each resource defines its own possible embeds.

To embed something, use the query parameter embed, which needs to be a string. If you want to embed, say, embed

the lists for a contact, use embed=lists.

GET /api/v2/contacts/lm9?embed=lists HTTP/1.1
Host: news.mybusiness.com
Accept: application/json

This will lead to the list being embedded in the response:

HTTP/1.1 200 OK
Content-Type: application/json; charset=UTF-8
Date: Mon, 20 Jan 2014 13:58:42 GMT
Expires: Mon, 20 Jan 2013 13:58:42 GMT
Server: Apache/2.4.6

1.4. Embedding 4

amity REST API, Release 2.8.0

Cache-Control: private

{
"data": {

"id": "lm9",
"name1": "Amy",
"name2": "Pond",
"lists": {

"data": [
{

"id": "hag",
"label": "Test List"

},
{

"id": "h352",
"label": "Another List"

}
]

}
}

}

As you can see, the contact now contains a list element, which contains the same structure as if you requested a

list of lists, i.e. it has a data element.

If a resource allows multiple embeds, separate those with a comma, e.g. embed=lists,children for fetching fold-
ers:

GET /api/v2/folders/lm9?embed=lists,children HTTP/1.1
Host: news.mybusiness.com
Accept: application/json

The request above will fetch a single folder (lm9) and embed both the lists contained it in, as well as the child folders

it has.

HTTP/1.1 200 OK
Content-Type: application/json; charset=UTF-8
Date: Mon, 20 Jan 2014 13:58:42 GMT
Expires: Mon, 20 Jan 2013 13:58:42 GMT
Server: Apache/2.4.6
Cache-Control: private

{
"data": {

"id": "lm9",
"label": "Foo",
"parent": null,
"children": {

"data": [
{

"id": "hs62g",
"label": "A child folder of 'Foo'"

},
{

"id": "ha62g",
"label": "Another child"

}
]

},

1.4. Embedding 5

amity REST API, Release 2.8.0

"lists": {
"data": [

{
"id": "hag",
"label": "Test List in 'Foo'"

},
{

"id": "h352",
"label": "Another List in 'Foo'"

}
]

}
}

}

Embedding works recursively. So for example, you cannot just fetch a folder's lists, but also for each of its lists the

contacts therein and for each of those contacts the lists that they are in. Or you can fetch a folder, its children (the

folders directly inside it), their children, their children's children etc.

Use a dot to separate multiple recursive levels, e.g. embed=children.children to fetch the direct children and

their children as well. Or use embed=children.contacts to embed the child folders and the contacts for each of

those child folders.

GET /api/v2/folders/lm9?embed=children.children HTTP/1.1
Host: news.mybusiness.com
Accept: application/json

HTTP/1.1 200 OK
Content-Type: application/json; charset=UTF-8
Date: Mon, 20 Jan 2014 13:58:42 GMT
Expires: Mon, 20 Jan 2013 13:58:42 GMT
Server: Apache/2.4.6
Cache-Control: private

{
"data": {

"id": "lm9",
"label": "Foo",
"parent": null,
"children": {

"data": [
{

"id": "hs62g",
"label": "A child folder of 'Foo'",
"children": {

"data": [
{

"id": "hs62g",
"label": "A grandchild of 'Foo'"

}
]

}
},
{

"id": "ha62g",
"label": "Another child",
"children": {

"data": []

1.4. Embedding 6

amity REST API, Release 2.8.0

}
}

]
}

}
}

You can nest embeds up to three levels deep.

1.4. Embedding 7

CHAPTER 2

Authentication

To access the API, the requests need to be authenticated. At the moment, there is one authentication scheme avail-

able.

2.1 Signed Requests

Signing requests works by creating an HMAC over the entire request, using an API key as the secret. This way, only an

authorized user can create valid signatures, which can even be transmitted over insecure (speak: non-TLS) connec-

tions. The API key is available within the amity webapp.

Warning: Never send your API key in requests. It is only used to create signatures, which in turn are sent to the

server in order to authenticate requests.

The following things are all part of the request signature:

• the HTTP method (e.g. GET)

• the HTTP URI, starting from the API root (e.g. /api/v2/contacts/lm9)

• all query string parameters (e.g. ?test=1&foo=bar)

• the request payload (the ``body'', i.e. the JSON)

The signature is calculated using a SHA256-HMAC and sent along as a special HTTP header, together with your client

ID (so amity knows which secret it needs to use to verify your signatures).

2.1.1 Calculating the Signature

It's very important to follow the building scheme for signatures exactly, as even a slight variation will lead to unusable

signatures. You can have a look at the example source code, provided at the end of this page.

1. Start with an empty list (or vector or array or however a simple list of strings is called in your programming

environment).

2. Put the HTTP verb, capitalized, as the first element in your list (e.g. GET).

3. Put the request URI as the second element in the list. Note that the URI always starts with a /.

4. Put the encoded query string in the list. The query string must be sorted by the parameter names (so it's

foo=bar&xyz=example, because foo comes before xyz). Also, make sure to encode the space character

(0x20) as %20 (some implementations will generate +).

5. If your request contains a payload, put it in as the last element in your list.

8

amity REST API, Release 2.8.0

6. Join your list items with a newline character (\n).

You should now have a string that looks like this:

GET
/api/v2/contacts
param=value&something=else&the=end

Or, for a POST request:

POST
/api/v2/contacts

{
"contact": {

"name": "Who",
"title": "Dr"

}
}

Notice the empty line. If you have no query string, like in this request, leave the 3rd line blank, but do not leave it

out!

Now you can create the HMAC of this string in combination with your API key as the secret.

2.1.2 Sending the Signature

Each request must contain a signature. You have to send it in form of a special HTTP header, called X-Signature.
Do not quote it, just send the verbatim signature, like in this example:

GET /api/v2/contacts HTTP/1.1
Host: news.mybusiness.com
X-Signature: beccf85d099bb5168c635d748198c94c065ac85f1e4ba90fcc989d1db6a471fb

2.1.3 Identify Yourself

In order for amity to validate your signature, it needs to know what secret to use. In order to do so, you have to

provide your client ID as well. Similar to the signature, it needs to be sent as part of every request and is called

X-Client.

GET /api/v2/contacts HTTP/1.1
Host: news.mybusiness.com
X-Signature: beccf85d099bb5168c635d748198c94c065ac85f1e4ba90fcc989d1db6a471fb
X-Client: lm9

2.2 Failures

In general, if the provided authentication is invalid for any reason, the API will respond with a generic error message.

In this case, the HTTP code is 403 (Forbidden). The status field (see the Errors section) may contain a special detail

code, which would be documented along with the operation.

An authentication failure could look like this:

2.2. Failures 9

amity REST API, Release 2.8.0

{
"status": 403951,
"message": "The given signature is invalid."

}

Read more about the error handling in the API basics.

HTTP 400 (Bad Request)

• 400950: No X-Client header given.

• 400951: No X-Signature header given.

HTTP 403 (Unauthenticated)

• 403950: The requested client ID is invalid.

• 403951: The given signature is invalid.

2.3 Example Code

The following PHP function creates a signature for a request.

<?php

function createSignature($secret, $method, $uri, array $params = array(), $body = null) {
// make sure the parameters in the query string have a well-defined order and that
// spaces are escaped as %20 instead of +.
ksort($params);

$params = http_build_query($params, '', '&');
$params = str_replace(array(' ', '+'), '%20', $params);

// the payload is what needs to be signed and should include all relevant request data
$payload = array(

$method,
$uri,
$params

);

// append the request body, if any, to the payload
if ($body !== null) {

$payload[] = $body;
}

$payload = implode("\n", $payload);

// $payload now looks like this:

/*
POST
/api/v2/contacts/lm9
abc=xyz¶m=foo
{"contact":{"name1":"Amy","name2":"Pond","email":"amy@tardis.org"}}
*/

// calculate the HMAC for this payload using the known, good $secret
return hash_hmac('sha256', $payload, $secret);

2.3. Example Code 10

amity REST API, Release 2.8.0

}

$body = json_encode(array(
'contact' => array(

'name1' => 'Amy',
'name2' => 'Pond',
'email' => 'amy@tardis.org'

)
));

$params = array(
'param' => 'foo',
'abc' => 'xyz'

);

$signature = createSignature('<your-api-key-here>', 'POST', '/api/v2/contacts/lm9', $params, $body);
print $signature;

2.3. Example Code 11

CHAPTER 3

Resources

This chapter describes the available resources in amity.

3.1 Contacts

Contacts can be grouped in lists, and a single contact can be in multiple lists at the same time.

The lists a contact belongs to can be managed via the contact list subresource.

You can embed a contact's list(s) by using embed=lists.

3.1.1 Structure

Each contact, represented as a JSON object, consists of the following fields:

id (string) automatically generated, unique ID

gender (string) the contact's gender, can be m for male, f for female or x for unknown

active (boolean) whether or not the contact is active

language (string) the contact's language ID

anonymized (boolean) if true, the link tracking for the contact will be anonymized, as some countries forbid tracking

personal information

title (string) the contact's academic title, like Dr., can be empty

name1 (string) the contact's firstname

name2 (string) the contact's lastname

email (string) the contact's email address

zip (string) the contact's zipcode, can be empty

city (string) the contact's city, can be empty

province (string) the contact's province, can be empty

nation (string) the contact's province, can be empty

company (string) the contact's company, can be empty

mobile (string) the contact's mobile phone number, can be empty

phone (string) the contact's home phone number, can be empty

12

amity REST API, Release 2.8.0

fax (string) the contact's fax number, can be empty

registered (date, ISO 86011) time and date when the contact was registered

address1 (string) first address line, can be empty

address2 (string) second address line, can be empty

internalid (string) an internal identifier for the contact, usage varies from customer to customer; mostly used to

customer numbers and similar values; can be empty

next (date, ISO 86012) the next deadline, can be empty

birthday (date, ISO 86013) the contact's birthday, can be empty

fromlabel (string) the name used in From: headers for mailings to this contact, can be empty

replytolabel (string) the name used in Reply-To: headers for mailings to this contact, can be empty

replyto (string) the email address used in Reply-To: headers for mailings to this contact, can be empty

Example:

{
"id": "lm9",
"gender": "m",
"active": true,
"language": "lm9",
"anonymized": true,
"title": "Dr.",
"name1": "",
"name2": "Who",
"email": "thedoctor@tardis.org",
"zip": null,
"city": null,
"province": null,
"nation": null,
"company": null,
"mobile": null,
"phone": null,
"fax": null,
"registered": "2014-04-08T15:18:57Z",
"address1": null,
"address2": null,
"internalid": null,
"next": null,
"birthday": null,
"fromlabel": null,
"replytolabel": null,
"replyto": null

}

3.1.2 Fetch all contacts

To get a list of your contacts, you have to send a GET request to /contacts.

By default, you will receive up to 50 contacts, starting from the first one, but you can (and need to, if you want to get

all) include query parameters to control both the page size (size) and the page number (page). Note that the page
number starts at zero and that you cannot request more than 500 contacts in one request.

3.1. Contacts 13

http://www.w3.org/TR/1998/NOTE-datetime-19980827
http://www.w3.org/TR/1998/NOTE-datetime-19980827
http://www.w3.org/TR/1998/NOTE-datetime-19980827

amity REST API, Release 2.8.0

You can also filter the list to only show contacts whose email address (partially) matches a given value. Use the email
query parameter for the value you want to filter and set the optional substring parameter to 1 if you want partial

matches as well. Note that you have to give at least 3 characters for the email address.

Filtering by gender (using the gender query parameter with a value of f, m or x) is possible as well, just like only

fetching active contacts. If you give multiple filters, they will be applied as a conjunction (i.e. they must all match).

A few examples should make it easier to understand:

GET /contacts fetches the first 50 contacts

GET /contacts?page=1 fetches the next 50 contacts (51-100)

GET /contacts?size=200&page=2 fetches contacts 401 to 600

GET /contacts?email=someone@somewhere.de performs an exact-match search for the given address; responds

with either zero or one contact

GET /contacts?email=@somewhere.de&substring=1 finds the first 50 contacts having an email address con-

taining @somewhere.de

GET /contacts?gender=f&active=1 finds the first 50 active, female contatcs

GET /contacts?gender=f&email=@web.de&substring=1&size=100 finds the first 100 female contactswith an

email address containing @web.de

Request Example

This request will fetch the first 50 contacts.

GET /api/v2/contacts HTTP/1.1
Host: news.mybusiness.com
Accept: application/json
X-Client: lm9
X-Signature: beccf85d099bb5168c635d748198c94c065ac85f1e4ba90fcc989d1db6a471fb

Response Example

The data element in the response contains a flat list of contacts.

{
"data": [

{
"id": "lm9",
"title": "Dr",
"name2": "Who"

},
{

"id": "kn9n",
"name1": "Amy",
"name2": "Pond"

}
]

}

Error Conditions

Read more about the error handling in the API basics.

3.1. Contacts 14

amity REST API, Release 2.8.0

HTTP 400 (Bad Request)

• 400001: The given email query parameter is too short.

• 400002: The given gender query parameter is invalid.

3.1.3 Fetch a single contact

To fetch a single contact, simply perform a GET request to /contacts/<contact-id>.

Request Example

This request will fetch the contact with the ID lm9.

GET /api/v2/contacts/lm9 HTTP/1.1
Host: news.mybusiness.com
Accept: application/json
X-Client: lm9
X-Signature: beccf85d099bb5168c635d748198c94c065ac85f1e4ba90fcc989d1db6a471fb

Response Example

You receive the data of this contact.

{
"data": {

"id": "lm9",
"title": "Dr",
"name2": "Who"

}
}

Error Conditions

Read more about the error handling in the API basics.

HTTP 400 (Bad Request)

• 400501: The given contact ID is invalid.

HTTP 404 (Not Found)

• 404001: The requested contact could not be found.

3.1.4 Create a new contact

To create a new contact, perform a POST request on the contact collection, that is /contacts. In your request

payload, you have to send the JSON structure with the contact data like name and email address. The contact ID will

be automatically generated.

Note: You need appropriate permission to create new contacts.

The request payload must be a JSON object, having a contact element which contains the contact information. It

should look like this:

3.1. Contacts 15

amity REST API, Release 2.8.0

{
"contact": {

"name1": "Amy",
"name2": "Pond"

}
}

Because this is such a common operation, you can also put the contact into any number of lists in the same request.

To do so, include another lists element in your payload, which must be an array of list IDs.

{
"contact": {

"name1": "Amy",
"name2": "Pond"

},
"lists": [

"kn9n",
"abc3",
"g57a"

]
}

Similarly, you can also trigger any number of events. This is useful for sending welcome mails to the new contact. To

do so, include a list of event IDs:

{
"contact": {

"name1": "Amy",
"name2": "Pond"

},
"lists": [

"kn9n",
"abc3",
"g57a"

],
"events": [

"bc34"
]

}

Both lists and events are completely optional. Note that in both lists, invalid IDs are silently ignored and will not

lead to cancelled requests.

Request Example

The following request will create a new contact, Amy Pond.

POST /api/v2/contacts HTTP/1.1
Host: news.mybusiness.com
Content-Type: application/json; charset=UTF-8
Accept: application/json
X-Client: lm9
X-Signature: beccf85d099bb5168c635d748198c94c065ac85f1e4ba90fcc989d1db6a471fb
Content-Length: 93

{
"contact": {

"name1": "Amy",

3.1. Contacts 16

amity REST API, Release 2.8.0

"name2": "Pond",
"email": "amy@tardis.org"

}
}

Response Example

In response, you will get the contact back (the same as if you did GET /contacts/<id>).

{
"data": {

"id": "bca9",
"name1": "Amy",
"name2": "Pond",
"email": "amy@tardis.org"

}
}

Error Conditions

Read more about the error handling in the API basics.

HTTP 400 (Bad Request)

• 400001: The request does not contain an contact element.

• 400100: The given email address is invalid.

• 400101: Any of the dates given is invalid (can be next or birthday).

• 400102: The given gender is invalid (needs to be either f, m or x).

• 400103: The given language ID could not be found.

• 400501: The given contact ID is invalid.

• 400502: The given language ID is invalid.

• 400900: The request payload is not valid JSON.

• 400901: The request payload does not decode into a JSON object.

3.1.5 Update a contact

To update an existing contact, perform a PUT operation on him, e.g. PUT /contacts/bca9. You have to send the

same data as when creating a new contact, except that you cannot control the list association of the contact in your

request (so lists is not possible). It is however possible to trigger events.

To manage a contact's lists, use the lists subresource (/contacts/bca9/lists).

Note: You need appropriate permission to update contacts.

You don't have to send all fields of the contact. To avoid conflicts and accidental overwrites, only send the fields that

you want to change.

3.1. Contacts 17

amity REST API, Release 2.8.0

Request Example

The following request will update Amy's email address and then trigger an event to do some magic.

PUT /api/v2/contacts/bca9 HTTP/1.1
Host: news.mybusiness.com
Content-Type: application/json; charset=UTF-8
Accept: application/json
X-Client: lm9
X-Signature: beccf85d099bb5168c635d748198c94c065ac85f1e4ba90fcc989d1db6a471fb
Content-Length: 123

{
"contact": {

"email": "amy@tardis.co.uk"
},
"events": [

"lm44"
]

}

Response Example

The response contains the updated contact.

{
"data": {

"id": "bca9",
"name1": "Amy",
"name2": "Pond",
"email": "amy@tardis.co.uk"

}
}

Error Conditions

Read more about the error handling in the API basics.

HTTP 400 (Bad Request)

• 400001: The request does not contain an contact element.

• 400100: The given email address is invalid.

• 400101: Any of the dates given is invalid (can be next or birthday).

• 400102: The given gender is invalid (needs to be either f, m or x).

• 400103: The given language ID could not be found.

• 400501: The given contact ID is invalid.

• 400502: The given language ID is invalid.

• 400900: The request payload is not valid JSON.

• 400901: The request payload does not decode into a JSON object.

HTTP 404 (Not Found)

• 404001: The requested contact could not be found.

3.1. Contacts 18

amity REST API, Release 2.8.0

3.1.6 Delete a contact

There are two ways to handle ``deleting'' a user. Either perform a real deletion or just move the contact into the trash

bin.

To just do a ``soft delete'', update the contact (see above) and set the recyclebin flag to true (to un-delete the

contact, do the same but set the flag to false).

{
"contact": {

"recyclebin": true
}

}

To permanently delete a contact instead, perform a DELETE request on him, e.g. DELETE /contacts/bca9. There
is no additional payload in this request (so you cannot trigger any events).

Note: You need appropriate permission to delete contacts.

Warning: There is no un-do for this. Once this operation has been executed, the contact is gone for good.

Request Example

This request will delete the contact with the ID lm9.

DELETE /api/v2/contacts/lm9 HTTP/1.1
Host: news.mybusiness.com
Accept: application/json
X-Client: lm9
X-Signature: beccf85d099bb5168c635d748198c94c065ac85f1e4ba90fcc989d1db6a471fb

Response Example

The response will just contain a single success element.

{
"success": true

}

Error Conditions

Read more about the error handling in the API basics.

HTTP 404 (Not Found)

• 404001: The requested contact could not be found.

3.2 Lists

Lists are collections of contacts. Contacts can be in multiple lists at the same time and can be freely added to or

removed from lists.

3.2. Lists 19

amity REST API, Release 2.8.0

A list belongs to exactly one folder. Folders can be nested, but lists cannot (i.e. there are no sub-lists).

Each list has a label, which has to be unique within a folder.

This page describes how to manage what lists exists, how they are named and structured. To move contacts to and

from lists, use their list subresource instead.

You can embed a the contacts on a list (embed=cotacts) aswell as the folder inwhich a list is placed (embed=folder).

3.2.1 Structure

A JSON representation of a list consists of the following fields:

id (string) automatically generated, unique ID

label (string) the list's label

test (boolean) whether or not this is a test list, used for sending tests (i.e. testing how much a mailing looks like

spam)

disabled (boolean) disabled lists are hidden when creating a new mailing

folder (string) the ID of the folder where the list is located

Example:

{
"id": "lm9",
"label": "New Subscribers",
"test": true,
"disabled": false,
"folder": "bc23"

}

3.2.2 Fetch all lists

To get a list of your lists, you have to send a GET request to /lists. You will always receive all lists.

Request Example

GET /api/v2/lists HTTP/1.1
Host: news.mybusiness.com
Accept: application/json
X-Client: lm9
X-Signature: beccf85d099bb5168c635d748198c94c065ac85f1e4ba90fcc989d1db6a471fb

Response Example

The data element in the response contains a flat list of lists.

{
"data": [

{
"id": "lm9",
"label": "Tests",
"test": true

3.2. Lists 20

amity REST API, Release 2.8.0

},
{

"id": "kn9n",
"label": "New Subscribers",
"test": false

}
]

}

Error Conditions

There are no expected special error conditions.

3.2.3 Fetch a single list

To fetch a single list, simply perform a GET request to /lists/<list-id>.

Request Example

GET /api/v2/lists/lm9 HTTP/1.1
Host: news.mybusiness.com
Accept: application/json
X-Client: lm9
X-Signature: beccf85d099bb5168c635d748198c94c065ac85f1e4ba90fcc989d1db6a471fb

Response Example

{
"data": {

"id": "lm9",
"label": "New Subscribers",
"test": true

}
}

Error Conditions

Read more about the error handling in the API basics.

HTTP 400 (Bad Request)

• 400501: The given list ID is invalid.

HTTP 404 (Not Found)

• 404001: The requested list was not found.

3.2.4 Create a new list

To create a new list, perform a POST request on the list collection, that is /lists. In your request payload, you have to
send the JSON structure with the list data like the label and the folder to put the list in. The list ID will be automatically

generated.

3.2. Lists 21

amity REST API, Release 2.8.0

Note: You need appropriate permission to create new lists.

The folder ID is optional. If not given, the list will be placed in the root folder.

The request payloadmust be a JSON object, having a list element which contains the list information. It should look

like this:

{
"list": {

"label": "New Subscribers",
"folder": "bc23",
"test": false

}
}

For the sake of convenience you are able to create a new list and add contacts with one single request. To do so,

include another contacts element in your payload, which must be an array of contacts IDs.

{
"list": {

"label": "New Subscribers",
"folder": "bc23",
"test": false

},
"contacts": [

"kn9n",
"abc3",
"g57a"

]
}

Note that invalid IDs are silently ignored and will not lead to cancelled requests.

Request Example

The following request will create a new list, New Subscribers.

POST /api/v2/lists HTTP/1.1
Host: news.mybusiness.com
Content-Type: application/json; charset=UTF-8
Accept: application/json
X-Client: lm9
X-Signature: beccf85d099bb5168c635d748198c94c065ac85f1e4ba90fcc989d1db6a471fb
Content-Length: 93

{
"list": {

"label": "New Subscribers",
"folder": "bc23",
"test": false

}
}

Response Example

In response, you will get the list back (the same as if you did GET /lists/<id>).

3.2. Lists 22

amity REST API, Release 2.8.0

{
"data": {

"id": "n4g3"
"label": "New Subscribers",
"folder": "bc23",
"test": false

}
}

Error Conditions

Read more about the error handling in the API basics.

HTTP 400 (Bad Request)

• 400001: The request does not contain an list element.

• 400002: The folder ID is invalid.

• 400003: The folder could not be found.

• 400004: The given label is empty.

• 400900: The request payload is not valid JSON.

• 400901: The request payload does not decode into a JSON object.

HTTP 409 (Conflict)

• 409001: There is already a list with that label in the given folder.

3.2.5 Update a list

To update an existing list, perform a PUT operation on it, e.g. PUT /lists/bca9. You have to send the same data as

when creating a new list, except that you cannot control the contacts in the list in your request (so contacts is not

possible).

Note: You need appropriate permission to update lists.

You don't have to send all fields of the list. To avoid conflicts and accidental overwrites, only send the fields that you

want to change.

Request Example

The following request will update a list's label.

PUT /api/v2/lists/bca9 HTTP/1.1
Host: news.mybusiness.com
Content-Type: application/json; charset=UTF-8
Accept: application/json
X-Client: lm9
X-Signature: beccf85d099bb5168c635d748198c94c065ac85f1e4ba90fcc989d1db6a471fb
Content-Length: 123

{
"list": {

"label": "A New Hope for Lists"

3.2. Lists 23

amity REST API, Release 2.8.0

}
}

Response Example

The response contains the updated list.

{
"data": {

"id": "bca9",
"label": "A New Hope for Lists",
"folder": "bc23"

}
}

Error Conditions

Read more about the error handling in the API basics.

HTTP 400 (Bad Request)

• 400001: The request does not contain an list element.

• 400002: The folder ID is invalid.

• 400003: The folder could not be found.

• 400004: The given label is empty.

• 400501: The given list ID is invalid.

• 400900: The request payload is not valid JSON.

• 400901: The request payload does not decode into a JSON object.

HTTP 409 (Conflict)

• 409001: There is already a list with that label in the given folder.

HTTP 404 (Not Found)

• 404001: The requested list could not be found.

3.2.6 Delete a list

To delete a list, perform a DELETE request on it, e.g. DELETE /lists/bca9. Note that deleting a list does not delete
the contacts in it.

Note: You need appropriate permission to delete lists.

Request Example

DELETE /api/v2/lists/lm9 HTTP/1.1
Host: news.mybusiness.com
Accept: application/json
X-Client: lm9
X-Signature: beccf85d099bb5168c635d748198c94c065ac85f1e4ba90fcc989d1db6a471fb

3.2. Lists 24

amity REST API, Release 2.8.0

Response Example

The response will just contain a single success element.

{
"success": true

}

Error Conditions

Read more about the error handling in the API basics.

HTTP 404 (Not Found)

• 404001: The requested folder was not found.

3.3 Contact Lists

This subresource on contacts can be used to manage the lists a contact is assigned to. It's available as /lists for

each contact.

If you want to change what lists exist and where they are located (in what folder), use the lists resource instead.

There are no sub-resources available for embedding.

3.3.1 Structure

Each contact-list association is represented like any normal list representation, except custom links.

{
"id": "lm9",
"label": "My Test List",
"test": true,
"disabled": false,
"folder": "bag452",
"links": [

{
"rel": "self",
"uri": "/v2/lists/lm9"

},
{

"rel": "remove",
"uri": "/v2/contacts/ha64g/lists/lm9"

},
{

"rel": "folder",
"uri": "/v2/folders/bag452"

}
]

}

3.3. Contact Lists 25

amity REST API, Release 2.8.0

3.3.2 Get current lists

To get a list of all lists a contact is currently on, perform a GET request on the subresource of a given contact, e.g.

/contacts/lm9/lists. You will get a flat list of lists back.

Request Example

GET /api/v2/contacts/lm9/lists HTTP/1.1
Host: news.mybusiness.com
Accept: application/json
X-Client: lm9
X-Signature: beccf85d099bb5168c635d748198c94c065ac85f1e4ba90fcc989d1db6a471fb

Response Example

{
"data": [

{
"id": "kn9n",
"label": "Another Test List"

},
{

"id": "lm9",
"label": "Testlist"

}
]

}

Error Conditions

Read more about the error handling in the API basics.

HTTP 400 (Bad Request)

• 400501: The given contact ID is invalid.

HTTP 404 (Not Found)

• 404001: The requested contact could not be found.

3.3.3 Add contact to a list

To put an existing contact on an existing list, issue a PUT request on that particular contact list's subresource, e.g.

/contact/lm9/lists/hg23.

Note: You need appropriate permission to add a contact to a list.

Request Example

Note how this request does not have a body (``payload'').

3.3. Contact Lists 26

amity REST API, Release 2.8.0

PUT /api/v2/contacts/bca9/lists/gta546 HTTP/1.1
Host: news.mybusiness.com
Content-Type: application/json; charset=UTF-8
Accept: application/json
X-Client: lm9
X-Signature: beccf85d099bb5168c635d748198c94c065ac85f1e4ba90fcc989d1db6a471fb
Content-Length: 0

Response Example

The response contains the newly created contact-list association.

{
"data": {

"id": "gta546",
"label": "Some Random List"

}
}

Error Conditions

Read more about the error handling in the API basics.

HTTP 400 (Bad Request)

• 400501: The given contact ID is invalid.

• 400502: The given list ID is invalid.

HTTP 404 (Not Found)

• 404001: The requested contact could not be found.

• 404002: The requested list could not be found.

HTTP 409 (Conflict)

• 404001: The requested contact is already on the requested list.

3.3.4 Remove contact from a list

To remove a contact from a list, issue a DELETE request on the association. Note that this does not delete either the

contact or the list, but only the connection between the two.

Note: You need appropriate permission to remove contacts from lists.

Request Example

DELETE /api/v2/contacts/bca9/lists/gta546 HTTP/1.1
Host: news.mybusiness.com
Accept: application/json
X-Client: lm9
X-Signature: beccf85d099bb5168c635d748198c94c065ac85f1e4ba90fcc989d1db6a471fb

3.3. Contact Lists 27

amity REST API, Release 2.8.0

Response Example

The response will just contain a single success element.

{
"success": true

}

Error Conditions

Read more about the error handling in the API basics.

HTTP 400 (Bad Request)

• 400501: The given contact ID is invalid.

• 400502: The given list ID is invalid.

HTTP 404 (Not Found)

• 404001: The requested contact could not be found.

• 404002: The requested list could not be found.

• 404003: The requested contact-list association could not be found.

3.4 Folders

Folders are used to structure contact lists. A folder can contain an unlimited number of lists and sub folders. Each

folder has therefore exactly one parent folder.

There is a predefined root folder. The root folder cannot be edited or moved. All folders which are not epxlicitely put

into a folder are automatically children of this root folder.

You can embed a folder's lists (embed=lists) as well as its child folders (embed=children).

3.4.1 Structure

A JSON representation of a folder consists of the following fields:

id (string) automatically generated, unique ID

label (string) the folder label, a freely choosable text

parent (string) the parent folder's ID, is empty for the root folder (cannot be empty for user-created folders)

Example:

{
"id": "lm9",
"label": "My folder",
"parent": "ha62g"

}

3.4. Folders 28

amity REST API, Release 2.8.0

3.4.2 Fetch root folder

To get the top-most (``root'') folder, perform a GET operation on /folders. You will receive a list of folders, like when
you fetch child folders, but this list will always only contain one element.

Request Example

GET /api/v2/folders HTTP/1.1
Host: news.mybusiness.com
Accept: application/json
X-Client: lm9
X-Signature: beccf85d099bb5168c635d748198c94c065ac85f1e4ba90fcc989d1db6a471fb

Response Example

{
"data": [

{
"id": "lm9",
"label": "My Folder"

}
]

}

Error Conditions

There are no expected special error conditions.

3.4.3 Fetch a single folder

To fetch a single folder, simply perform a GET request to /folders/<folder-id>.

Request Example

GET /api/v2/folders/lm9 HTTP/1.1
Host: news.mybusiness.com
Accept: application/json
X-Client: lm9
X-Signature: beccf85d099bb5168c635d748198c94c065ac85f1e4ba90fcc989d1db6a471fb

Response Example

{
"data": {

"id": "lm9",
"label": "My Folder"

}
}

3.4. Folders 29

amity REST API, Release 2.8.0

Error Conditions

Read more about the error handling in the API basics.

HTTP 400 (Bad Request)

• 400501: The given folder ID is invalid.

HTTP 404 (Not Found)

• 404001: The requested folder was not found.

3.4.4 Fetch child folders

To get all child folders of a given folder, you can access the /children subresource by issuing a GET request. Note

that this only includes direct children (i.e. it's not recursive) and that you cannot manipulate the children list using

this subresource.

Request Example

GET /api/v2/folders/lm9/children HTTP/1.1
Host: news.mybusiness.com
Accept: application/json
X-Client: lm9
X-Signature: beccf85d099bb5168c635d748198c94c065ac85f1e4ba90fcc989d1db6a471fb

Response Example

The data element in the response contains a flat list of folders.

{
"data": [

{
"id": "kn62",
"label": "First Subfolder"

},
{

"id": "kn9n",
"label": "Second Subfolder"

}
]

}

Error Conditions

Read more about the error handling in the API basics.

HTTP 400 (Bad Request)

• 400501: The given folder ID is malformed.

HTTP 404 (Not Found)

• 404001: The requested folder was not found.

3.4. Folders 30

amity REST API, Release 2.8.0

3.4.5 Create a new folder

To create a new folder, perform a POST request on the folder collection, that is /folders. In your request payload,

you have to send the JSON structure with the folder data like the label and the parent folder. The folder ID will be

automatically generated.

Note: You need appropriate permission to create new folders.

The parent ID is optional. If not given, the list will be placed in the root folder.

The request payloadmust be a JSONobject, having a folder elementwhich contains the folder information. It should

look like this:

{
"folder": {

"label": "New Subscribers",
"parent": "bc23"

}
}

Request Example

The following request will create a new folder,My Awesome Folder.

POST /api/v2/folders HTTP/1.1
Host: news.mybusiness.com
Content-Type: application/json; charset=UTF-8
Accept: application/json
X-Client: lm9
X-Signature: beccf85d099bb5168c635d748198c94c065ac85f1e4ba90fcc989d1db6a471fb
Content-Length: 93

{
"list": {

"label": "My Awesome Folder",
"parent": "bc23"

}
}

Response Example

In response, you will get the folder back (the same as if you did GET /folders/<id>).

{
"data": {

"id": "n4g3",
"label": "My Awesome Folder",
"parent": "bc23"

}
}

Error Conditions

Read more about the error handling in the API basics.

3.4. Folders 31

amity REST API, Release 2.8.0

HTTP 400 (Bad Request)

• 400001: The request does not contain an folder element.

• 400002: The parent folder ID is invalid.

• 400003: The parent folder could not be found.

• 400004: The given label is empty.

• 400900: The request payload is not valid JSON.

• 400901: The request payload does not decode into a JSON object.

3.4.6 Update a folder

To update an existing folder, perform a PUT operation on it, e.g. PUT /folders/bca9. You have to send the same

data as when creating a new folder.

Note: You need appropriate permission to update folders.

You don't have to send all fields of the folder. To avoid conflicts and accidental overwrites, only send the fields that

you want to change.

Request Example

The following request will update a folder's label.

PUT /api/v2/lists/bca9 HTTP/1.1
Host: news.mybusiness.com
Content-Type: application/json; charset=UTF-8
Accept: application/json
X-Client: lm9
X-Signature: beccf85d099bb5168c635d748198c94c065ac85f1e4ba90fcc989d1db6a471fb
Content-Length: 123

{
"folder": {

"label": "An Even Better Title"
}

}

Response Example

The response contains the updated folder.

{
"data": {

"id": "bca9",
"label": "An Even Better Title",
"parent": "bc23"

}
}

3.4. Folders 32

amity REST API, Release 2.8.0

Error Conditions

Read more about the error handling in the API basics.

HTTP 400 (Bad Request)

• 400001: The request does not contain an folder element.

• 400004: The given label is empty.

• 400501: The given folder ID is invalid.

• 400900: The request payload is not valid JSON.

• 400901: The request payload does not decode into a JSON object.

HTTP 404 (Not Found)

• 404001: The requested folder was not found.

3.4.7 Delete a folder

To delete a folder, perform a DELETE request on it, e.g. DELETE /folders/bca9.

Warning: Deleting a folder will also delete all child folders as well as all contact lists contained in it. It does not

delete the contacts, though.

Note: You need appropriate permission to delete folders.

Request Example

DELETE /api/v2/folders/lm9 HTTP/1.1
Host: news.mybusiness.com
Accept: application/json
X-Client: lm9
X-Signature: beccf85d099bb5168c635d748198c94c065ac85f1e4ba90fcc989d1db6a471fb

Response Example

The response will just contain a single success element.

{
"success": true

}

Error Conditions

Read more about the error handling in the API basics.

HTTP 404 (Not Found)

• 404001: The requested folder was not found.

3.4. Folders 33

amity REST API, Release 2.8.0

3.5 Sendings

This resource can be used to manage sendings (mailings); at the moment, you can just start a new mailing. In a

mailing, you are sending an asset to a number of contacts (controlled via the lists).

You can embed the lists (embed=lists) used by a mailing.

3.5.1 Structure

A JSON representation of a mailing consists of the following fields:

id (string) automatically generated, unique ID

created (date, ISO 86014) the date and time when the asset has been created

creator (string) the ID of the user who created this asset

label (string) the mailings's label

asset (string) ID of the asset to send in the mailing

category (string) ID of the mailing's category (categories can be used to control default behaviour for various

settings of a mailing)

approved (boolean) a mailing is sent once it has been approved

schedule (date, ISO 86015) the date and time for when the sending is scheduled to start

Example:

{
"id": "hd72h",
"label": "My Test Mailing",
"created": "2014-05-12T12:23:34Z",
"creator": "lm9",
"asset": "8hb23",
"category": "gdt34",
"approved": false,
"schedule": "2014-05-13T10:00:00Z"

}

3.5.2 Create a new mailing

Creating a new mailing works by sending a POST request to the /mailings resource. If you want to, the mailing

can start immediately or at a later point in time. In both cases, the actual sending is perform asynchronously in the

background, so you don't need and can't wait for the mailing to be finished.

Note: You need appropriate permission to create new mailings.

The request payload must be a JSON object, having a mailing element which contains the mailing information. It

should look like this:

{
"mailing": {

"asset": "8hb23",
"category": "gdt34",
"label": "My Test Mailing"

3.5. Sendings 34

http://www.w3.org/TR/1998/NOTE-datetime-19980827
http://www.w3.org/TR/1998/NOTE-datetime-19980827

amity REST API, Release 2.8.0

}
}

To set the contact lists that are included for this mailing, add another element, lists to your request:

{
"mailing": {

"asset": "8hb23",
"category": "gdt34",
"label": "My Test Mailing"

},
"lists": [

"123bcg",
"7ah3m",
"ha72h"

]
}

Creating a mailing without any lists is a pointless endeavour.

Scheduling

Instead of sending a fixed schedule date, you have to give a symbolic value.

now If you set schedule to now, the sending will start right away, if approved has been set to true.

today With this scheduling type, you also have to send a time value, being a ISO 6801 formatted time without

seconds (i.e. HH:MM, seconds would simply be ignored). The date will be simply the current date.

later Much like today, but you also have to send a date value with an ISO 6801 formatted date (i.e. YYYY-MM-DD).

The reason for splitting the scheduling up into these three modes is that the server may adjust the automatically

determined values (like the date for today) to accomodate server workload.

Note: All dates and times are interpreted as UTC values.

Of course, you cannot give a schedule date that is in the past, the same way that you cannot plan more than 10 years

ahead.

This example will send a mail on Christmas at 12:00 (UTC):

{
"mailing": {

"asset": "8hb23",
"category": "gdt34",
"label": "My Test Mailing",
"schedule": "later",
"date": "2015-12-24",
"time": "12:00"

},
"lists": [

"123bcg"
]

}

3.5. Sendings 35

amity REST API, Release 2.8.0

Request Example

POST /api/v2/mailings HTTP/1.1
Host: news.mybusiness.com
Content-Type: application/json; charset=UTF-8
Accept: application/json
X-Client: lm9
X-Signature: beccf85d099bb5168c635d748198c94c065ac85f1e4ba90fcc989d1db6a471fb
Content-Length: 93

{
"mailing": {

"asset": "8hb23",
"category": "gdt34",
"label": "My Test Mailing",
"schedule": "later",
"date": "2015-12-24",
"time": "12:00"

},
"lists": [

"123bcg",
"7ah3m",
"ha72h"

]
}

Response Example

You will receive the newly created mailing back.

{
"data": [

{
"id": "hd72h",
"label": "My Test Mailing",
"created": "2014-05-12T12:23:34Z",
"creator": "lm9",
"asset": "8hb23",
"category": "gdt34",
"approved": false,
"schedule": "2014-05-13T10:00:00Z"

}
]

}

Error Conditions

Read more about the error handling in the API basics.

HTTP 400 (Bad Request)

• 400001: The request does not contain an mailing element.

• 400002: No asset ID given.

• 400003: No category ID given.

• 400004: No or empty label given.

3.5. Sendings 36

amity REST API, Release 2.8.0

• 400005: The given schedule is invalid.

• 400006: The asset ID is invalid.

• 400007: The category ID is invalid.

• 400008: The requested asset could not be found.

• 400009: The requested category could not be found.

• 400010: The given sending time is malformed.

• 400011: The given sending time is invalid.

• 400012: The given sending date is malformed.

• 400013: The given sending date is invalid.

• 400014: The given sending date and time are in the past.

• 400900: The request payload is not valid JSON.

• 400901: The request payload does not decode into a JSON object.

3.6 Assets

Assets are templates formailings, written in HTML with placeholders. You can also give a plaintext, to create a multi-

part asset.

This resource allows you to create new assets.

There are no sub-resources available for embedding.

3.6.1 Structure

The JSON representation of an asset is as follows:

id (string) automatically generated, unique ID

title (string) the asset's title, a freely choosable string

name (string) the asset's name, a freely choosable string

subject (string) when sent in a mailing, this will be the mailing's subject

format (string) the asset's format, can be either html for an asset containing only HTML, or multipart for an asset
with both HTML and plaintext content

created (date, ISO 86016) the date and time when the asset has been created

creator (string) the ID of the user who created this asset

Example:

{
"id": "hd72h",
"created": "2014-05-12T12:23:34Z",
"creator": "lm9",
"name": "An Asset to send",
"title": "My Awesome Asset",
"subject": "Our Newsletter for Jan 2014",
"format": "multipart"

}

3.6. Assets 37

http://www.w3.org/TR/1998/NOTE-datetime-19980827

amity REST API, Release 2.8.0

3.6.2 Create a new asset

Creating works by sending a POST request to the /assets resource.

Note: You need appropriate permission to create new assets.

The request payload must be a JSON object, having a asset element which contains the asset information. It should

look like this:

{
"asset": {

"title": "My Awesome Asset",
"name": "An Asset to send",
"subject": "Our Newsletter for Jan 2014",
"html": "<!DOCTYPE><html><p>Hello [Nachname], this is our newsletter!</p></html>",
"linktracking": true,
"multipart": false

}
}

Depending on your needs, you can include either plain (for the plaintext) or html in the payload. You can also send

both, if you set multipart to true.

If you fear that your HTML markup might get mangled during transmission, you can also Base64 encode it and send

it as html_base64 instead. This also works for the plaintext.

{
"asset": {

"title": "My Awesome Asset",
"name": "An Asset to send",
"subject": "Our Newsletter for Jan 2014",
"html_base64": "PCFET0NUWVBFIGh0bWw+Li4u",
"linktracking": true,
"multipart": false

}
}

The non-encoded versions have preceendence, however. So if you send both html and html_base64, html wins.

The following JSON fields are available for this endpoint:

title (string) mandatory; the asset's title

name (string) mandatory; the asset's name

subject (string) mandatory; the asset's subject

html / html_base64 (string) mandatory; the asset's HTML content (you must send one of the two, but never both)

plain / plain_base64 (string) optional; the asset's plaintext content (never send both), is only useful if you set

multipart to true.

linktracking (boolean) optional; whether or not to enable tracking the links that are embedded in the asset's

HTML), defaults to false if not given

multipart (boolean) optional; whether or not this asset is a multipart asset, defaults to false if not given

Request Example

This example creates a new multipart asset.

3.6. Assets 38

amity REST API, Release 2.8.0

POST /api/v2/assets HTTP/1.1
Host: news.mybusiness.com
Content-Type: application/json; charset=UTF-8
Accept: application/json
X-Client: lm9
X-Signature: beccf85d099bb5168c635d748198c94c065ac85f1e4ba90fcc989d1db6a471fb
Content-Length: 93

{
"asset": {

"title": "My Awesome Asset",
"name": "An Asset to send",
"subject": "Our Newsletter for Jan 2014",
"html": "<!DOCTYPE><html><p>Hello [Nachname], this is our newsletter!</p></html>",
"plain": "Hello [Nachname], this is our newsletter!",
"linktracking": false,
"multipart": true

}
}

Response Example

You will receive the newly created asset back.

{
"data": {

"id": "hd72h",
"created": "2014-05-12T12:23:34Z",
"creator": "lm9",
"name": "An Asset to send",
"title": "My Awesome Asset",
"subject": "Our Newsletter for Jan 2014",
"format": "multipart"

}
}

The format field can be either html or multipart.

Error Conditions

Read more about the error handling in the API basics.

HTTP 400 (Bad Request)

• 400001: The request does not contain an asset element.

• 400002: No title given.

• 400003: No name given.

• 400004: No subject given.

• 400005: No html and no html_base64 given.

• 400006: The given title is empty.

• 400007: The given name is empty.

• 400008: The given subject is empty.

3.6. Assets 39

amity REST API, Release 2.8.0

• 400009: The given HTML code is empty.

• 400900: The request payload is not valid JSON.

• 400901: The request payload does not decode into a JSON object.

3.7 Files

In many cases, assets (written in HTML) will contain links to embedded resources, like images. amity allows you to

host these images on its servers and this resource can be used to upload files.

Note: There are only a few restrictions on the files you can upload. You are advised to be sensible and not store
gigabytes worth of files on amity servers. Abusing this hosting feature may lead to your account or this resource

being suspended.

Note: Similarly, abusing amity as your generic file hoster is not allowed. Uploaded filesmay only be used formailings.

There are no sub-resources available for embedding.

3.7.1 Structure

The JSON representation of a file consists of the following fields:

url (string) the absolute URL of the file hosted on amity servers

size (int) the filesize in bytes

Example:

{
"url": "http://news.mybusiness.com/public/img/companylogo.png",
"size": 54281

}

3.7.2 Upload a new file

In order to upload a file, it has to be hosted somewhere already. amity can download the file from a

remote location and store it on its own server. Within the API, you have to perform a PUT request on

/files/<type>/<your-desired-filename>.

Note: You need appropriate permission to upload files.

The type in the URI must be either img or data, depending on whether you upload an image or something else (like

a PDF).

The request payload must be a JSON object, having a file element which contains the source information. It should

look like this:

{
"file": {

"source": "http://www.example.com/files/myfile.png"
}

}

3.7. Files 40

amity REST API, Release 2.8.0

Note that the following restrictions apply here:

• Existing files on the amity server cannot be overwritten (because that could interfere with older mailings).

• The target filename must not be empty and follow the form something.ext (i.e. you cannot create ``hidden''

files, e.g. .png).

• The following file extensions are allowed: js, css, html, htm, pdf, gif, jpg, jpeg, png, tiff, xml and txt

• The source URL must be an absolute URL, using HTTP or HTTPS. Note that the validity of an SSL certificate is

not checked, so do not use this to upload sensitive files.

• The connection attempt times out after 3 seconds.

• The file download may at most last 20 seconds before it's interrupted and cancelled.

• There may be at most 3 HTTP redirects involved.

Request Example

This example uploads the company logo as an image.

PUT /api/v2/files/img/companylogo.png HTTP/1.1
Host: news.mybusiness.com
Content-Type: application/json; charset=UTF-8
Accept: application/json
X-Client: lm9
X-Signature: beccf85d099bb5168c635d748198c94c065ac85f1e4ba90fcc989d1db6a471fb
Content-Length: 93

{
"file": {

"source": "http://www.initech.com/assets/images/logo.png"
}

}

Response Example

You will receive some information about the new file back.

{
"data": {

"url": "http://news.mybusiness.com/public/img/companylogo.png",
"size": 54281

}
}

Error Conditions

Read more about the error handling in the API basics.

HTTP 400 (Bad Request)

• 400001: The requested filename does not have a name (e.g. is .txt) or no extension.

• 400002: The requested filename has an invalid extension.

• 400003: The requested filetype is invalid (must be either img or data).

• 400004: The request payload does not contain a file element.

3.7. Files 41

amity REST API, Release 2.8.0

• 400005: The request payload does not contain a source element.

• 400006: The given source URL is invalid.

• 400007: The given source URL is neither HTTP nor HTTPS.

• 400008: The given source URL points to localhost.

HTTP 409 (Bad Request)

• 409001: The request file exists already.

HTTP 502 (Bad Gateway)

• 502001: The request to the source server has timed out.

• 502002: The source server responded with an error.

3.8 Bounces

A bounce means that an ail was sent to a specific address, but the mail server that received the email for that person

has sent it back, saying it could not be delivered. Those bounces are recorded and made available via this resource.

API clients can access the log and see which contact could not receive a sending.

There are no sub-resources available for embedding.

3.8.1 Structure

Each bounce record is presented in JSON as follows:

id (unsigned int) automatically generated, unique ID

mailing (string) the ID of the affected mailing

email (string) the recipient's email address

date (date, ISO 86017) the date and time when the bounce occured

type (string) the bounce type, one of hardbounce, softbounce or autoresponse

reaction (string) amity's reaction to the bounce, one of none, excluded, recycled, recycledexcluded or

deleted

error (string) a human readable description of the bounce reason, e.g. Mailbox full, as defined in RFC 18938

Example:

{
"id": 1624,
"mailing": "hga52",
"email": "kenny@toronto.ca",
"date": "2014-04-03T12:45:07Z",
"type": "softbounce",
"reaction": "excluded",
"error": "Mailing list expansion problem"

}

8http://www.ietf.org/rfc/rfc1893.txt

3.8. Bounces 42

http://www.w3.org/TR/1998/NOTE-datetime-19980827
http://www.ietf.org/rfc/rfc1893.txt

amity REST API, Release 2.8.0

3.8.2 Fetching bounces

To fetch bounce records, you have to send a GET request to /bounces. In your query string, you can filter the result

by email address, mailing, month or the bounce reason. You can also combine multiple filters (which is what you

usually will do to get meaningful data).

Filtering by email addressworks just like filtering contacts. You can give the email query string parameter, whichmust

be at least 3 characters long. If you don't also give substring, an exact match search will be performed, otherwise

the value of emailmust just be contained somewhere in the email address.

To further restrict the result, you can give mailing, which needs to be the ID of onemailing (e.g. ?mailing=hgd523).
An invalid mailing ID will lead to an error message.

You can restrict the time frame the result by using the month parameter. It needs to be a string in the form of YYYY-MM
(e.g. 2014-05 for May 2014). Invalid months will lead to an error.

Lastly, you can filter the result by the bounce reaction, using the reaction parameter. It needs to be one of the

following values:

• recycled

• excluded

• recycledexcluded (recycled and excluded)

• anything (everything except none)

Request Example

The following request will fetch all bounces of April 2014 for contacts having an email address containing .ca (which
is more or less saying ``all Canadian contacts'').

POST /api/v2/bounces?email=.ca&substring=1&month=2014-04 HTTP/1.1
Host: news.mybusiness.com
Accept: application/json
X-Client: lm9
X-Signature: beccf85d099bb5168c635d748198c94c065ac85f1e4ba90fcc989d1db6a471fb

Response Example

You will receive a flat list of bounces.

{
"data": [

{
"id": 1624,
"mailing": "hga52",
"email": "kenny@toronto.ca",
"date": "2014-04-03T12:45:07Z",
"type": "softbounce",
"reaction": "excluded",
"error": "Mailing list expansion problem"

},
{

"id": 1629,
"mailing": "bc61",
"email": "some@one.ca",
"date": "2014-04-06T07:23:18Z",

3.8. Bounces 43

amity REST API, Release 2.8.0

"type": "hardbounce",
"reaction": "excluded",
"error": "System incorrectly configured"

}
]

}

Error Conditions

Read more about the error handling in the API basics.

HTTP 400 (Bad Request)

• 400001: The given email address is too short (needs to be at least 3 characters long).

• 400002: The given mailing ID is invalid.

• 400003: The given month is invalid (i.e. not in the YYYY-MM format).

• 400004: The given reaction is invalid.

3.8. Bounces 44

	Basics
	Versioning
	Request
	Headers

	Response
	Success
	Errors

	Embedding

	Authentication
	Signed Requests
	Calculating the Signature
	Sending the Signature
	Identify Yourself

	Failures
	Example Code

	Resources
	Contacts
	Structure
	Fetch all contacts
	Fetch a single contact
	Create a new contact
	Update a contact
	Delete a contact

	Lists
	Structure
	Fetch all lists
	Fetch a single list
	Create a new list
	Update a list
	Delete a list

	Contact Lists
	Structure
	Get current lists
	Add contact to a list
	Remove contact from a list

	Folders
	Structure
	Fetch root folder
	Fetch a single folder
	Fetch child folders
	Create a new folder
	Update a folder
	Delete a folder

	Sendings
	Structure
	Create a new mailing

	Assets
	Structure
	Create a new asset

	Files
	Structure
	Upload a new file

	Bounces
	Structure
	Fetching bounces

